331 research outputs found

    A varying social rate of discount

    Get PDF

    Non-uniform social rates of discount in natural resource models

    Get PDF

    WL | Delft Hydraulics,

    Get PDF
    Management issues in many sectors of society demand for integrated analysis, which can be supported by integrated modelling. Since the allinclusive modelling software is difficult to achieve, and possibly even undesirable, integrated modelling will require the linkage of individual model or model components that address specific domains. Emerging from the water sector, OpenMI has been developed with the purpose of being the glue which can link legacy and nonlegacy model components from various origins together. OpenMI provides a standardized interface to define, describe and transfer data on a time basis between software components that run simultaneously. This paper presents the technica

    Harmonised Principles for Public Participation in Quality Assurance of Integrated Water Resources Modelling

    Get PDF
    The main purpose of public participation in integrated water resources modelling is to improve decision-making by ensuring that decisions are soundly based on shared knowledge, experience and scientific evidence. The present paper describes stakeholder involvement in the modelling process. The point of departure is the guidelines for quality assurance for `scientific` water resources modelling developed under the EU research project HarmoniQuA, which has developed a computer based Modelling Support Tool (MoST) to provide a user-friendly guidance and a quality assurance framework that aim for enhancing the credibility of river basin modelling. MoST prescribes interaction, which is a form of participation above consultation but below engagement of stakeholders and the public in the early phases of the modelling cycle and under review tasks throughout the process. MoST is a flexible tool which supports different types of users and facilitates interaction between modeller, manager and stakeholders. The perspective of using MoST for engagement of stakeholders e.g. higher level participation throughout the modelling process as part of integrated water resource management is evaluate

    OpenMI: the essential concepts and their implications for legacy software

    No full text
    International audienceInformation & Communication Technology (ICT) tools such as computational models are very helpful in designing river basin management plans (rbmp-s). However, in the scientific world there is consensus that a single integrated modelling system to support e.g. the implementation of the Water Framework Directive cannot be developed and that integrated systems need to be very much tailored to the local situation. As a consequence there is an urgent need to increase the flexibility of modelling systems, such that dedicated model systems can be developed from available building blocks. The HarmonIT project aims at precisely that. Its objective is to develop and implement a standard interface for modelling components and other relevant tools: The Open Modelling Interface (OpenMI) standard. The OpenMI standard has been completed and documented. It relies entirely on the "pull" principle, where data are pulled by one model from the previous model in the chain. This paper gives an overview of the OpenMI standard, explains the foremost concepts and the rational behind it

    Open access to sensors

    Get PDF

    Meta-learning for symbolic hyperparameter defaults

    Get PDF
    Computer Systems, Imagery and Medi

    Dynamic alignment using external socket reaction moments in trans-tibial amputees

    Get PDF
    Background: Prosthetic alignment is used to optimize prosthetic functioning and comfort. Spatio-temporal and kinematic gait parameters are generally observed to guide this process. However, they have been shown to be influenced by compensations, which reduces their sensitivity to changes in alignment. Alternatively, the use of moments working at the base of the prosthetic socket, external socket reaction moments (ESRM), has been proposed to quantify prosthetic alignment. Research question: To investigate if a predetermined kinetic alignment criterion, 0Nm averaged over the stance phase, can be used to fine-tune prosthetic alignment. Methods: 10 transtibial amputees were included in this intervention study. Firstly, their prostheses were aligned using conventional alignment procedures. Kinetic parameters and Socket Comfort Score (SCS) were measured in this initial alignment (IA) condition. Subsequently, the coronal plane ESRM during gait was presented to the prosthetist in real time using a Gait Real-time Analysis Interactive Lab. The prosthetist iteratively adapted the prosthetic alignment towards a predetermined average ESRM during the stance phase of 0 Nm. At the Final Alignment (FA), kinetic parameters and SCS were measured again and a paired sample t-test was performed to compare ESRMs and SCSs between alignments. Results: A significant (p < 0.001) change was found in the absolute coronal plane ESRM (mean ± SD) from IA (|0.104| ± 0.058 Nm/kg) to FA (|0.012| ± 0.015 Nm/kg). In addition a significant (p < 0.001) change of the external coronal adduction knee moments was observed from IA (−0,127 ± 0.079 Nm/kg) to FA (−0.055 ± 0.089 Nm/kg), however this change was more variable among participants. On average, no significant (p = 0.37) change in the SCS was observed. Significance: While this study shows the potential of quantifying and guiding alignment with the assistance of kinetic criteria, it also suggests that a sole reliance on the ESRM as a single alignment criterion might be too simple
    • …
    corecore